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Abstract
The geometry of four-qubit entanglement is investigated. We replace some of
the polynomial invariants for four qubits introduced recently by new ones
of direct geometrical meaning. It is shown that these invariants describe
four points, six lines and four planes in complex projective space CP3. For
the generic entanglement class of stochastic local operations and classical
communication they take a very simple form related to the elementary
symmetric polynomials in four complex variables. Moreover, suitable powers
of their magnitudes are entanglement monotones that fit nicely into the
geometric set of n-qubit ones related to Grassmannians of l-planes found
recently. We also show that in terms of these invariants the hyperdeterminant
of order 24 in the four-qubit amplitudes takes a more instructive form than the
previously published expressions available in the literature. Finally, in order
to understand two-, three- and four-qubit entanglement in geometric terms we
propose a unified setting based on CP3 furnished with a fixed quadric.

PACS numbers: 03.67.−a, 03.65.Ud, 03.65.Ta, 02.40.−k

1. Introduction

Recently, the problem of characterizing n-qubit entanglement classes has generated
considerable interest. This problem was raised within the context of quantum information
theory regarding the physical phenomenon of entanglement as a resource. In order to exploit
the capabilities encoded in this resource for different tasks of quantum information processing
we have to somehow measure it. During the past few years a number of useful entanglement
measures for pure states have been found [1–9]. Classifications up to four qubits have appeared
[10–12] and the interesting geometric structures associated with entangled pure states have
been noted [9, 12–18].

In our previous set of papers [9, 16, 17] using some results from twistor theory we
initiated an approach for understanding n-qubit entanglement in geometric terms. We have
shown that this problem can be completely solved for three qubits, and we obtained partial
results for a special subclass characterized by n-qubit entanglement monotones. The aim of
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the present paper is to add some interesting new results on the geometry of four-qubit SLOCC
(stochastic local operations and classical communication [19]) invariants. Such invariants have
been introduced in [5], where the Hilbert series of the algebra of invariants has been found.
This result enabled the authors to construct a complete set of four algebraically independent
invariants of degrees 2, 4, 4, 6, respectively in the complex coefficients characterizing the
four-qubit entangled pure state. The values of these invariants on the SLOCC orbits of [11]
were also given. Moreover, an explicit formula for the hyperdeterminant of degree 24 was
also obtained. The authors of [5] have conjectured that some of the invariants might have a
geometric meaning. In this paper we show that this is indeed the case.

In section 2 we present a new set of four invariants, by replacing two from those of [5].
In section 3 we clarify the geometric meaning of these invariants in terms of the geometry
of CP3, the complex projective space. In section 4 we show that using our new set of
invariants the expression for the 24th-order hyperdeterminant takes a more instructive form
than the one that can be found in [5]. Moreover, it turns out that the entanglement classes
invariant under SLOCC transformations take a very simple form related to the elementary
symmetric polynomials in four complex variables. The magnitudes of our invariants turn out
to be entanglement monotones that fit nicely into the geometric set of n-qubit entanglement
monotones related to Grassmannians of l-planes in CL, with L = 2n, l � L found recently.
Finally, our conclusions and some comments are left for section 5.

2. Invariants

Let us write an arbitrary four-qubit state in the form

|�〉 =
1∑

i,j,k,l=0

Zijkl|ijkl〉 ∈ C2 ⊗ C2 ⊗ C2 ⊗ C2, (1)

where |ijkl〉 = |i〉1 ⊗ |j 〉2 ⊗ |k〉3 ⊗ |l〉4. Following [5] we introduce decimal notation for
Zijkl ≡ Zr , where r = 8i + 4j + 2k + l, and the matrices

L =




Z0 Z4 Z8 Z12

Z1 Z5 Z9 Z13

Z2 Z6 Z10 Z14

Z3 Z7 Z11 Z15




≡ (A, B, C, D) (2)

M =




Z0 Z2 Z8 Z10

Z1 Z3 Z9 Z11

Z4 Z6 Z12 Z14

Z5 Z7 Z13 Z15


 ≡

(
AT CT

BT DT

)
(3)

N =




Z0 Z1 Z8 Z9

Z2 Z3 Z10 Z11

Z4 Z5 Z12 Z13

Z6 Z7 Z14 Z15


 ≡

(
A C
B D

)
. (4)

Here A, B, C, D ∈ C4 are considered as four column vectors and A,B, C,D are 2×2 matrices
with T referring to transposition. We wish to describe the geometry of four-qubit entanglement
in terms of the four vectors Aα,Bβ, Cγ and Dδ living in C4, where α, β, γ, δ = 0, 1, 2, 3.
Hence we regard the matrix L as fundamental. The matrices M and N will be used later.
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We are interested in studying a subset of polynomials in the complex numbers Zr, r =
0, . . . , 15, that are invariant under the SLOCC group of stochastic local operations and classical
communication, i.e. SL(2, C)⊗4. Such transformations are of the form

|�〉 �→ (S1 ⊗ S2 ⊗ S3 ⊗ S4)|�〉, (5)

where Sm ∈ SL(2, C),m = 1, 2, 3, 4, and |�〉 takes the form (1) with the indices of Sm

referring to the label of C2 in the tensor product they are acting on.
In order to define the SLOCC invariants we will introduce two extra structures on C4.

The first one is a bilinear form g : C4 × C4 → C such that for two vectors A, B ∈ C4 we have

(A, B) �→ g(A, B) ≡ A · B = gαβAαBβ = AαBα, (6)

where

g =




0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0


 =

(
0 1

−1 0

)
⊗

(
0 1

−1 0

)
, (7)

α, β = 0, 1, 2, 3, and summation for repeated indices is understood. Note that the matrix of
our symmetric bilinear form can be written in a tensor product form g = ε ⊗ ε, where ε is
invariant under the group SL(2, C), i.e. we have SεST = ε with S ∈ SL(2, C). Moreover,
since

Aα = Z00kl, Bβ = Z01kl, Cγ = Z10kl,

Dδ = Z11kl, α, β, γ, δ = 0, 1, 2, 3, k, l = 0, 1,
(8)

quantities involving this symmetric bilinear form are automatically invariant with respect
to SL(2, C) ⊗ SL(2, C) transformations of third and fourth qubit, i.e. those of the form
I ⊗I ⊗S3 ⊗S4. Since SL(2, C)⊗SL(2, C)/Z2 � SO(4, C) it follows that greek indices like
α, β etc can also be regarded as vector indices under SO(4, C). This conversion of complex
four vectors into complex 2 × 2 matrices has already been used elsewhere to connect the
results of twistor theory to the geometry of entanglement [16, 17]. Hence, the columns of the
matrix L of (2) transform as vectors under transformations of the form I ⊗ I ⊗ S3 ⊗ S4 and
as the 00, 01, 10 and 11 components of a tensor under those with the form S1 ⊗ S2 ⊗ I ⊗ I .

The second structure, as we will see, is related to the notion of duality in CP3. For the
vectors A, B, C and D let us introduce their duals as

aα ≡ −εαβγ δB
βCγ Dδ, bβ = εαβγ δA

αCγ Dδ,

cγ ≡ εαβγ δA
αBβDδ, dδ ≡ −εαβγ δA

αBβCγ .
(9)

Clearly, these quantities transform as vectors under transformations of the form I ⊗I ⊗S3 ⊗S4

and a straightforward calculation shows that a, b, c and d behave under those of the form
S1 ⊗ S2 ⊗ I ⊗ I as the 11, 10, 01 and 00 components of a tensor, respectively.

Let us now introduce the notation A ∧ B (a bivector) corresponding to the antisymmetric
matrix AαBβ − AβBα and the one

L ≡ DetL = εαβγ δAαBβCγ Dδ. (10)

Now the SLOCC invariants we wish to propose are

I1 = 1
2 (A · D − B · C) (11)

I2 = 1
6

(
(A ∧ B) · (C ∧ D) + (A ∧ C) · (B ∧ D) − 1

2 (A ∧ D)2 − 1
2 (B ∧ C)2)

)
(12)

I3 = 1
2 (a · d − b · c) (13)

I4 = L. (14)
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Here quantities such as (A ∧ B) · (C ∧ D) are defined as

(A ∧ B) · (C ∧ D) = (AαBβ − AβBα)(CαDβ − CβDα)

= 2((A · C)(B · D) − (A · D)(B · C)). (15)

The first of our invariants I1 takes the form

I1 = 1
2H = 1

2 (Z0Z15 − Z1Z14 − Z2Z13 + Z3Z12 − Z4Z11 + Z5Z10 + Z6Z9 − Z7Z8), (16)

showing that I1 = 1
2H , where H is one of the basic invariants of [5]. It is just a special case of

the n-tangle with n even introduced earlier by Wong and Christensen [3]. Reverting to binary
notation it is easy to show that I1 is also a permutation invariant [3, 5, 9].

Our last invariant I4 is just L = DetL, an invariant also introduced by the authors of [5].
These authors have also introduced two more invariants of orders 4 and 6 denoted by M and D,
respectively (the first of them being just minus the determinant of our matrix M). They have
shown after obtaining the Hilbert series that the invariants H, L,M and D are algebraically
independent and complete. Here, instead of the invariants M and D we prefer the new ones I2

and I3. As we will see the set (I1, I2, I3, I4) is of geometrical significance. Moreover, it turns
out that the values of these invariants on the generic SLOCC orbit [11] of four-qubit entangled
states are just the elementary symmetric polynomials in four complex variables. We will also
show that in terms of this new set of invariants the explicit formula for the hyperdeterminant
of degree 24 takes a more instructive form than the corresponding one of [5].

3. The geometric meaning of four-qubit invariants

3.1. The invariant I2

Let us now explain the structure of I2. In order to do this we introduce another C4 corresponding
to the four-vector structure also present in the first two indices of Zijkl . Converting the first two
spinor indices to the vector ones labelled by µ = 0, 1, 2, 3, what we obtain is a ‘vector-valued’
four-vector Zµα = (A, B, C, D)T . (Alternatively, regarding Zµα as a 4 × 4 matrix we obtain
the matrix L of equation (2).) Let us now also supply this new copy of C4 with the bilinear
form g known from equation (6) with matrix gµν, µ, ν = 0, 1, 2, 3. Define now the second
exterior power of a matrix as the map

∧2
: Cn×n → C( n

2 )×( n

2 ), (17)

which takes an Mµν ∈ Cn×n, 0 � µ, ν � n − 1, to

M(2) ≡
(∧2

M

)
IJ

≡ Mµ1ν1Mµ2ν2 − Mµ1ν2Mµ2ν1 , (18)

where I = {µ1, µ2} with 0 � µ1 < µ2 � n − 1 and J = {ν1, ν2} with 0 � ν1 < ν2 � n − 1.
For the 4 × 4 matrix gµν of our bilinear form g we have

GIJ ≡ g
(2)
IJ = g(2)IJ =




0 0 0 0 0 1
0 0 0 0 1 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 1 0 0 0 0
1 0 0 0 0 0




, (19)

where I, J = 01, 02, 03, 12, 13, 23.
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Let us now introduce the ‘bivector-valued’ 4 × 4 antisymmetric Plücker matrix

Pµν =




0 A ∧ B A ∧ C A ∧ D
−A ∧ B 0 B ∧ C B ∧ D
−A ∧ C −B ∧ C 0 C ∧ D
−A ∧ D −B ∧ D −C ∧ D 0


 . (20)

Note that since the elements of Pµν are separable bivectors it has the index structure Pµναβ .
Explicitly, we have

Pµναβ = ZµαZνβ − ZµβZνα. (21)

They are the Plücker coordinates of six lines in CP3 labelled by the subscripts µν =
01, 02, 03, 12, 13, 23. Alternatively, one can introduce the ‘bivector-valued’ vector P with six
components PI , I = 01, 02, 03, 12, 13, 23, with the same geometric meaning:

PI = (A ∧ B, A ∧ C, A ∧ D, B ∧ C, B ∧ D, C ∧ D)T . (22)

In this notation the invariant I2 of equation (12) can be written in the form

I2 = 1
12GIJ PI · PJ = 1

6P µν · Pµν = 1
6P µναβPµναβ. (23)

Note that the elements of the Plücker matrix being now separable bivectors are multiplied
together according to the (15) law bringing in the dot product. Since I2 contains contractions
with respect to four SL(2, C) ⊗ SL(2, C) invariant matrices g (two of them operate on the
first two and the other two on the last two qubits), it is automatically an SL(2, C)⊗4 invariant.

From the form of the Plücker matrix equation (20) it is also clear that it encapsulates
information concerning four-qubit entanglement in terms of six planes in C4 or alternatively
six lines in CP 3. Hence, we managed to identify the SLOCC invariant I2 as a line invariant
in complex projective space.

Let us now clarify the relationship of our invariant I2 with those of [5]. There also the
invariants L = DetL,M = DetM and N = DetN were defined where the 4 × 4 matrices are
given by equations (2)–(4). Note that our convention for M differs in sign from the one adopted
in [5]. It can be shown that M = L + N as can be verified by calculating the determinants
of the matrices in equations (3) and (4) containing 2 × 2 blocks. Now a straightforward
calculation shows that in terms of the algebraically independent invariants H = 2I1, L = I4

and M preferred by [5] we have the relation

6I2 = H 2 + 2L − 4M. (24)

3.2. The invariant I3

In order to understand the geometric meaning of the invariant I3 of equation (13) we have
to recall some results from projective geometry. A plane in CP3 consists of a set of points
with homogeneous coordinates Xα, α = 0, 1, 2, 3, which satisfy a single linear equation of
the form

aαXα = 0, (25)

where the complex numbers aα are called the coordinates of the plane. Clearly, aα and λaα ,
with λ 	= 0, determine the same plane in CP3, so the set of planes in CP3 is itself a CP3 called
the dual projective space. A plane in CP3 is a CP2. There is a unique plane containing three
general points in CP3. If Bβ,Cγ and Dδ are the three general points, then there is a unique
solution up to proportionality of the three equations

aαBα = aαCα = aαDα = 0 (26)
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given by the first of equation (9). Now we see that the four vectors aα, bβ, cγ and dδ

defined in equation (9) are the (dual Plücker) coordinates of four planes in CP3. They
are defined by the four points (B, C, D), (A, C, D), (A, B, D) and (A, B, C), respectively.
Alternatively, for these planes we can use the Plücker coordinates (separable trivectors)
B ∧ C ∧ D, A ∧ C ∧ D, A ∧ B ∧ D, A ∧ B ∧ C, where for example

(A ∧ B ∧ C)αβγ = AαBβCγ + Aγ BαCβ + AβBγ Cα

−AβBαCγ − Aγ BβCα − AαBγ Cβ ≡ 3!A[αBβCγ ]. (27)

The set of points common to two planes is a line in CP3. A line is given by the points
satisfying two linear equations of the form

aαXα = bαXα = 0. (28)

A sufficient and necessary condition for these equations to hold is

a[αbβ]X
β = 0. (29)

Hence, in order to characterize the line (a CP1) defined by this equation we can either use the
dual Plücker coordinates (a separable bivector)

(a ∧ b)αβ = aαbβ − aβbα ≡ 2!a[αbβ] (30)

or using equation (9) the Plücker coordinates (another separable bivector)

(C ∧ D)γ δ = Cγ Dδ − CδDγ ≡ 2!C[γ Dδ]. (31)

This example shows that the planes with the Plücker coordinates B ∧ C ∧ D and A ∧ C ∧ D
intersect in the projective line given by the Plücker coordinates C ∧ D.

Now clearly I3 of equation (13) is an SL(2, C)⊗4 invariant. Indeed, the dual Plücker
coordinates a, b, c and d are transforming as the 11, 01, 10 and 00 components of a tensor
under transformations of the form S1 ⊗ S2 ⊗ I ⊗ I ; hence, the combination a · d–b · c is
an invariant with respect to such transformations due to the ‘determinant-like’ structure.
Moreover, this quantity is also invariant under transformations of the form I ⊗ I ⊗S3 ⊗S4 due
to the occurrence of the SL(2, C)⊗2 invariant dot product of equation (6). Note that I3 has the
same structure as I1. This exemplifies a general pattern: suppose we have an invariant (I1);
then find a set of covariants (i.e. a, b, c and d) to construct a new invariant (I3) by exploiting
the existing structure of the original invariant (I1). It is clear that I1 describes constellations
of points and I3 describes planes in CP3. It is important to realize, however, that unlike I3 the
invariant I1 is also a permutation invariant.

Let us also express our invariant in terms of the Plücker coordinates A ∧ B ∧ C etc as

I3 = 1
12 ((A ∧ C ∧ D) · (A ∧ B ∧ D) − (B ∧ C ∧ D) · (A ∧ B ∧ C)) . (32)

Alternatively, like in equation (20) one can define a third-order totally antisymmetric Plücker
tensor Pµνρ with trivectors as elements. The four independent elements of Pµνρ are
P012 = A ∧ B ∧ C, P123 = B ∧ C ∧ D, P023 = A ∧ C ∧ D and P013 = A ∧ B ∧ D.
Note that these quantities have the index structure e.g. P012αβγ = (A ∧ B ∧ C)αβγ where the
definition of equation (27) holds. Using this notation we have

I3 = 1

122
P µνρ · Pµνρ = 1

122
P µνραβγ Pµνραβγ , (33)

an expression to be compared with equation (23) obtained for our line invariant.
Finally, let us relate our invariant I3 to the sixth-order ones of [5]. Define the quadrilinear

form

Z(x, y, z, t) =
1∑

i,j,k,l=0

Zijklxiyj zktl . (34)
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Using this for each pair of variables one then defines the covariants (now we define it for the
pair xy)

bxy(x, z) = Det

(
∂2Z

∂zi∂tj

)
. (35)

Now let us reinterpret these biquadratic forms as bilinear forms on S2C (the symmetric part
of C2 ⊗ C2) as

bxy(x, y) = (
x2

0 , x0x1, x
2
1

)
Bxy


 y2

0

y0y1

y2
1


 , (36)

i.e. Bxy is a 3 × 3 matrix. Then following [5] we define

Duv = Det(Buv). (37)

Hence, we have six sextic invariants Dxy,Dzt , Dxz,Dyt ,Dxt and Dyz. According to [5] only
four of them are independent due to the relations Dxy = Dzt ,Dxz = Dyt and Dxt = Dyz.
Now a straightforward calculation shows that

I3 = 1
2 (Dxz + Dxt). (38)

In [5] the authors used the invariant D ≡ Dxt as a fundamental one satisfying the relation
Dxz − Dxt = HL; hence we can write

I3 = D + 1
2HL. (39)

By virtue of equations (14), (16), (24) and (39) the relationship between our set of invariants
(I1, I2, I3, I4) and those (H,M,L,D) used in [5] is established.

3.3. The invariants I4 and I2

The meaning of I4 is clear. I4 = DetL vanishes when the vectors A, B, C and D are linearly
dependent. Moreover, since I4 and I2 are both of fourth order let us now explore the relationship
between them.

Let us label the six lines as in equation (20). Hence, for example, P01 is the line
corresponding to the separable bivector A ∧ B. More precisely, this object has the index
structure (P01)αβ = (A ∧ B)αβ = AαBβ − AβBα . In this notation

L = 1
4εαβγ δ(P01)αβ(P23)γ δ. (40)

We can regard this expression as a symmetric bilinear form in the six Plücker coordinates of
the two lines A ∧ B and C ∧ D. Let us denote this bilinear form by 〈,〉; hence we have

〈,〉 :
∧2

C4 ⊗
∧2

C4 → C, (Pµν, Pρσ ) �→ 〈Pµν, Pρσ 〉. (41)

Defining the dual of a bivector as

∗Pαβ = 1
2εαβγ δP

γ δ, (42)

it is easy to show that

〈Pµν, Pρσ 〉 = 〈∗Pµν,
∗Pρσ 〉. (43)

In this notation the equation 〈Pµν, Pνρ〉 = 0 expresses the fact that the planes described by
the separable bivectors Pµν and Pνρ in C4 have a line in common. In the CP3 picture this is
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equivalent to the fact that the corresponding lines in CP3 intersect at a point. Hence, we can
look at L as a line invariant too; moreover we have the obvious relations

I4 = 〈P01, P23〉 = 〈P02, P31〉 = 〈P03, P12〉 = 〈∗P01,
∗P23〉 = 〈∗P02,

∗P31〉 = 〈∗P03,
∗P12〉.

(44)

Let us now look at quantities like 〈Pµν,
∗Pρσ 〉! We have for example

〈P01,
∗P23〉 = (A · C)(B · D) − (A · D)(B · C = 1

2 (A ∧ B) · (C ∧ D). (45)

Since 〈Pµν,
∗Pρσ 〉 = 〈∗Pµν, Pρσ 〉 one can now write the invariant 6I2 in the form

6I2 = 〈P01,
∗P23〉 + 〈∗P01, P23〉 + 〈P02,

∗P13〉 + 〈∗P02, P13〉 − 〈P03,
∗P03〉 − 〈P12,

∗P12〉. (46)

Using equation (43) let us calculate 6(I2 ± I4). We get

6(I2 ± I4) = ±〈P01 ± ∗P01, P23 ± ∗P23〉
± 〈P02 ∓ ∗P02, P31 ∓ ∗P31〉 − 〈P12 ∓ ∗P03,

∗P12 ∓ P03〉. (47)

As we will see these invariants will occur in the expression for the hyperdeterminant. The
geometric meaning of these invariants is connected to the intersection properties of the self-
dual (∗P = P) or anti-self-dual (∗P = −P) parts of the planes in C4 (or alternatively of
lines in CP3). For example for P01 self-dual, P31 anti-self-dual and P12 identical to the dual
line of P30 (an equivalent condition for this is L(B ∧ C) = −b ∧ c) the invariant I4 − I2

vanishes. It is easy to check that the invariant U occurring in [5] can be related to one of these
invariants as

U ≡ H 2 − 4(L + M) = 6(I4 − I2). (48)

The fact that (among others) this invariant might have a geometric meaning was raised in [5].

4. The hyperdeterminant

Let us now consider the hyperdeterminant D4 for the four-qubit system. As is well known
for two-qubit systems the determinant D2 = Z00Z11 − Z01Z10 is related to the concurrence
[2] as C = 2|D2| characterizing two-qubit entanglement. Similarly, for three qubits the basic
quantity is the three-tangle [2] τ = 4|D3|, which is related to the hyperdeterminant D3 of
a 2 × 2 × 2 tensor formed from the eight complex amplitudes Zijk . D3 is an irreducible
polynomial in the eight amplitudes which is the sum of 12 terms of degree 4. For the explicit
expression of D3 see e.g. the book of Gelfand et al [20]. It is known that the next item in the
line namely the hyperdeterminant D4 of the form 2 × 2 × 2 × 2 is a polynomial of degree
24 in the 16 amplitudes Zijkl which has 2 894 276 terms [21]. An expression in terms of the
fundamental invariants (H,L,M,D) was given in [5]. Here we are interested in the explicit
form of D4, the hyperdeterminant of the 2 × 2 × 2 × 2 tensor Zijkl , based on the special
invariants (I1, I2, I3, I4) we have found in our CP3 picture.

As is well known [20] the hyperdeterminant D4 is the unique irreducible polynomial in
the 16 unknowns Zijkl that vanishes whenever the system of equations

F = ∂F

∂x
= ∂F

∂y
= ∂F

∂z
= ∂F

∂t
= 0, (49)

where

F = Z0000 + Z0001t + Z0010z + Z0100y + Z1000x + Z0011zt

+ Z0101yt + · · · + Z1110xyz + Z1111xyzt, (50)

has a solution (x0, y0, z0, t0) in C4.



On the geometry of four-qubit invariants 9541

Using the method of Schläfli according to theorem 14.4.1 and corollary 14.2.10 of [20],
D4 coincides with the discriminant � of D3(Z0jkl + λZ1jkl) considered as a polynomial in λ

divided by 256. This method has already been used to obtain a much simpler form for D3

of geometric meaning [16]. For D4 a method equivalent to this has been applied with the
result [5]

256D4 = S3 − 27T 2, (51)

where

12S = U 2 − 2V, 216T = U 3 − 3UV + 216D2, (52)

with

U = H 2 − 4(L + M), V = 12(HD + 2LM). (53)

Let us now express D4 in terms of our invariants (I1, I2, I3, I4) of geometric significance.
Using relations (14), (16), (24) and (39) in equations (51)–(53) we obtain the result

S = (
I 2

4 − I 2
2

)
+ 4

(
I 2

2 − I1I3
)
, T = (

I 2
4 − I 2

2

)(
I 2

1 − I2
)

+ (I3 − I1I2)
2. (54)

In this form it is obvious that the combined invariants I4 ± I2, I
2
1 − I2 of fourth, (I3 − I1I2)

of sixth and I 2
2 − I1I3 of eighth order should play a basic geometric role. We have already

clarified the geometric meaning of the first two invariants. They are related to self-duality
and anti-self-duality of the corresponding lines in CP3. One of these invariants I4 − I2 is just
1
6U , also used in [5]. In our form of D4 we prefer to also use the dual combination I4 + I2.
For the time being we do not know any geometrical interpretation of the other combinations.
Intuitively, it is clear that the invariant I 2

1 − I2 should play a similar role to the other fourth-
order invariants. Indeed, we have chosen the third and fourth qubits to play a special role. (An
equivalent picture arises when a special role is assigned to the first and the second qubit.) C4

defined by them is equipped with the bilinear form of equation (6). The null vectors (i.e. those
satisfying X · X = 0) describe a quadric embedded in CP3 which is isomorphic to CP1 ×CP1,
i.e. it is ruled by two families of projective lines which can be shown to be self-dual or anti-
self-dual, respectively [23]. Projective lines lying entirely inside a fixed quadric are called
isotropic lines. Had we chosen the two qubits playing a special role differently the notion of
self- or anti-self-duality of isotropic lines would have been defined with respect to a different
quadric. In this picture we conjecture that the invariants I4 − I2 and I 2

1 − I2 would play a dual
role. Since altogether we have three inequivalent choices, therefore, we can conclude that
the fourth-order invariants are related to the notion of duality of isotropic lines with respect
to a fixed quadric in CP3. It would be interesting to find a geometric interpretation for the
remaining invariants too.

Let us now consider another interesting property of D4 expressed in terms of our
invariants (I1, I2, I3, I4). As is well known the discriminant � of the polynomial
e4w

4 + e3w
3 + e2w

2 + e1w + e0 is given by the expression (see [20], equation (1.35) on
p 405)

�(e4w
4 + e3w

3 + e2w
2 + e1w + e0) = 256e3

0e
2
4 − 192e2

0e1e3e
2
4 − 128e2

0e
2
2e

2
4

+ 144e2
0e2e

2
3e4 − 27e2

0e
4
3 + 144e0e

2
1e2e

2
4 − 6e0e

2
1e

2
3e4 − 80e0e1e

2
2e3e4

+ 18e0e1e2e
3
3 + 16e0e

4
2e4 − 4e0e

3
2e

3
3 − 27e4

1e
2
4 + 18e3

1e2e3e4 − 4e3
1e

3
3

− 4e2
1e

3
2e4 + e2

1e
2
2e

4
3. (55)

Let us now consider the polynomial of the special form

p[I1, I2, I3, I4;w] ≡ w4 − (4I1)w
3 + (6I2)w

2 − (4I3)w + I 2
4 . (56)
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Then a straightforward calculation shows that

256D4 = �(p[I1, I2, I3, I4;w]). (57)

Note that the polynomial p is not directly related to the one arising from the method of
Schläfli. In this case one obtains

D3(Z0jkl + λZ1jkl) = h4λ
4 + h3λ

3 + h2λ
2 + h1λ + h0, (58)

where unlike those es the coefficients hs, s = 0, 1, . . . , 4, are fourth-order polynomials of Zijkl

that are not invariant with respect to the full group SL(2, C)⊗4. However, the discriminant
of this polynomial again gives 256D4, which is already an invariant with respect to the full
group of SLOCC transformations.

In order to illustrate the advantages of using our invariants (I1, I2, I3, I4) let us now
calculate their values on the generic SLOCC class. A generic pure state of four qubits can
always be transformed to the form [11]

|Gabcd〉 = a + d

2
(|0000〉 + |1111〉) +

a − d

2
(|0011〉 + |1100〉)

+
b + c

2
(|0101〉 + |1010〉) +

b − c

2
(|0110〉 + |1001〉), (59)

where a, b, c, d are the complex numbers. For this state the reduced density matrices obtained
by tracing out all but one party are proportional to the identity. This is the state with maximal
four-partite entanglement. Another interesting property of this state is that it does not contain
true three-partite entanglement [11]. A straightforward calculation shows that the values of
our invariants (I1, I2, I3, I4) occurring for the state |Gabcd〉 representing the generic SLOCC
class are

I1 = 1
4 [a2 + b2 + c2 + d2],

I2 = 1
6 [(ab)2 + (ac)2 + (ad)2 + (bc)2 + (bd)2 + (cd)2],

(60)

I3 = 1
4 [(abc)2 + (abd)2 + (acd)2 + (bcd)2], I4 = abcd, (61)

hence, the values of the invariants
(
4I1, 6I2, 4I3, I

2
4

)
occurring in the polynomial equation (56)

are given in terms of the elementary symmetric polynomials in the variables (x1, x2, x3, x4) =
(a2, b2, c2, d2). From this and equation (57) it immediately follows that the value of the
hyperdeterminant on the SLOCC orbit represented by the state |Gabcd〉 is

D4 = 1
256�i<j (xi − xj )

2 = 1
256V (a2, b2, c2, d2)2, (62)

in accordance with [5], where V is the Vandermonde determinant. For the other SLOCC
classes and the values of the invariants (H,L,M,D) see [5]. It is straightforward to give the
alternative values of (I1, I2, I3, I4) on these classes.

5. Comments and conclusions

In this paper we have considered some aspects of the problem of understanding four-qubit
entanglement in geometric terms. We have replaced two from the set containing four
algebraically independent invariants of [5] by the new ones. In this way all four invariants have
a simple geometric meaning. I1 is based on four 0-planes (points), I2 on six 1-planes (lines),
I3 on four 2-planes (planes) and finally I4 on a single 3-plane in CP3. According to theorem 2
of [24] suitable powers of the magnitudes of these invariants can be used as entanglement
monotones characterizing four-qubit entanglement. Moreover, for an arbitrary four-qubit
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state after calculating the set of invariants (I1, I2, I3, I4) and the value of the hyperdeterminant
D4, for D4 	= 0, we obtain four different roots of the fourth-order equation (56). These
roots are just the complex numbers (a2, b2, c2, d2). Their square roots produce the values
(±a,±b,±c,±d) appearing in the canonical form Gabcd . This shows that the study of the
degenerate cases of multiple roots of equation (56) arising for D4 = 0 could be useful for
obtaining the parameters of the canonical forms [11] from the values of the basic invariants.
This process is similar to the spirit of the one found for the three-qubit case [26]. There by
calculating the values of the independent SU(2)⊗3 invariants the canonical form of an arbitrary
three-qubit state was found.

We note that our four-qubit entanglement monotones fit nicely into the scheme of [9]
generating a class of n-qubit entanglement monotones based on bipartite decompositions of
H = C2n

. The basic idea followed there was to consider the manifold of subspaces of H, i.e.
suitable Grassmannians with the corresponding Plücker coordinates for them. Equivalently,
we should consider subspaces of the corresponding projective spaces P(H). Fixing a quadric
Q defined by a bilinear form similar to equation (6) a class of SLOCC invariants expressed in
terms of these Plücker coordinates can be generated. In this way we were able to reproduce
three of the basic four-qubit invariants (i.e. the triple (H,L,M)). Now we see that by
employing also the notion of projective duality all four algebraically independent invariants
of the four-qubit case can be written in the Plücker form (see equations (33) and (23) for our
new invariants). Note that antisymmetric (Plücker) matrices also appear in the work of V
Tapia connected to the problem of constructing multiqubit invariants [22]. It would be nice to
establish a connection between his algebraic method and our geometric one.

Finally, let us propose a suggestive geometric picture for four-qubit entanglement. In the
usual picture [12] a four-qubit state can be represented by a single point in CP15. Different
SLOCC classes correspond to this point lying on different subvarieties in CP15. Here we
would like to suggest an alternative picture. With a four-qubit state we associate a set of
four points A, B, C, D, six lines A ∧ B, A ∧ C, A ∧ D, B ∧ C, B ∧ D, C ∧ D and four planes
A ∧ B ∧ C, A ∧ C ∧ D, A ∧ B ∧ D, B ∧ C ∧ D in the space CP3 of smaller dimension. It
is easy to see by looking at the intersection properties of these geometrical objects that they
form a tetrahedron in CP3. This correspondence between entangled states and geometric
objects (unlike the previous one) is nonlocal. The invariants (I1, I2, I3, I4) we have proposed
obviously characterize the properties of this tetrahedron. For example, for I4 = 0 the four
points corresponding to the four vectors A, B, C and D in C4 are not linearly independent
(some of them are proportional); hence, the tetrahedron degenerates to a triangle or a line
etc depending on the degree of degeneracy. We conjecture that the vanishing of the other
three invariants somehow characterizes more intricate degeneracies occurring with lines and
planes of the tetrahedron. The class containing no degeneracy is the Gabcd -class that can be
represented by a regular tetrahedron. It would be interesting to understand how the SLOCC
classes arise in this picture.

Let us elucidate the meaning of the proposed correspondence a little bit further. The
usual geometric classification schemes for multiqubit systems are based on the use of
hyperdeterminants of more general type. These hyperdeterminants describe geometrically
hypersurfaces projectively dual to the so-called Segre embedding [12, 20] representing the
subvariety of totally separable states [18]. For two, three and four qubits, for instance, the
manifold of totally separable states is CP1 ×CP1 embedded in CP3, CP1 ×CP1 ×CP1 in CP7

and CP1 × CP1 × CP1 × CP1 in CP15, respectively. Here n = 2, 3, 4 qubit states carrying
entanglement are represented by points off the Segre surfaces. Such surfaces are representing
totally separable states in different projective spaces (CP2n−1). Here following the spirit of
our previous set of papers [9, 16, 17, 23] we prefer to suggest a unified CP3 picture. For
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n = 2, 3, 4 we take CP3 with a fixed quadric Q based on our choice of bilinear form (6).
Points lying on Q as a subvariety of CP3 correspond to null vectors in C4. For n = 2 to a
separable or an entangled state corresponds a point on or off Q respectively. For n = 3 we get
the following geometric picture [16, 23]. To a three-qubit state in the GHZ-class corresponds
a line in CP3 intersecting Q at two points. To a state in the W -class corresponds a line tangent
to Q at a point. The separable classes B(AC) and C(AB) are represented by isotropic lines
lying entirely in Q. They are self-dual and anti-self-dual lines belonging to the two different
rulings of Q. The A(BC) and (A)(B)(C) classes again correspond to the degenerate case
of points on and off the quadric Q (see also the pictorial representation of [22]). We expect
a similar pattern to exist also for the four-qubit (n = 4) case. Here, we have more lines
arranged to form a tetrahedron, and we have to consider constellations of these lines with
respect to our fixed quadric Q. The picture arising in this way has some striking similarity
with the Majorana [24] representation of states with spin s. One can represent geometrically
a state of spin s as a single point in CP2s , or alternatively, as a constellation of 2s points on
CP1, i.e. the Bloch sphere. Some degeneracies can occur in this case e.g. when 2s points
degenerate to a single one with multiplicity 2s corresponding to the states of highest and lowest
weights. In the same spirit we would rather represent n-qubit entangled states in CP3. Here,
however, in order to account for the nonlocality of multiqubit quantum entanglement instead
of merely a collection of points we also have to consider constellations of lines and planes in
CP3. Though this analogy is very appealing we expect it to run out of steam for the n = 5
case (five qubits) where probably we should furnish CP3 with more extra structures than a
quadric. However, for n � 5, in principle, we can consider constellations of ‘simplexes’ in
CP3 related to fundamental invariants of the SLOCC group whose combinatorial variability
should somehow correspond to the proliferating number of entanglement classes.
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